skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hipsey, Matthew R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 19, 2026
  2. Abstract Despite the growing use of Aquatic Ecosystem Models for lake modeling, there is currently no widely applicable framework for their configuration, calibration, and evaluation. Calibration is generally based on direct data comparison of observed versus modeled state variables using standard statistical techniques, however, this approach may not give a complete picture of the model's ability to capture system‐scale behavior that is not easily perceivable in observations, but which may be important for resource management. The aim of this study is to compare the performance of “naïve” calibration and a “system‐inspired” calibration, an approach that augments the standard state‐based calibration with a range of system‐inspired metrics (e.g., thermocline depth, metalimnetic oxygen minima), to increase the coherence between the simulated and natural ecosystems. A coupled physical‐biogeochemical model was applied to a focal site to simulate two key state‐variables: water temperature and dissolved oxygen. The model was calibrated according to the new system‐inspired modeling convention, using formal calibration techniques. There was an improvement in the simulation using parameters optimized on the additional metrics, which helped to reduce uncertainty predicting aspects of the system relevant to reservoir management, such as the occurrence of the metalimnetic oxygen minima. Extending the use of system‐inspired metrics when calibrating models has the potential to improve model fidelity for capturing more complex ecosystem dynamics. 
    more » « less
  3. Abstract While there is a diversity of approaches for modeling phytoplankton blooms, their accuracy in predicting the onset and manifestation of a bloom is still lagging behind what is needed to support effective management. We outline a framework that integrates trait theory and ecosystem modeling to improve bloom prediction. This framework builds on the concept that the phenology of blooms is determined by the dynamic interaction between the environment and traits within the phytoplankton community. Phytoplankton groups exhibit a collection of traits that govern the interplay of processes that ultimately control the phases of bloom initiation, maintenance, and collapse. An example of process‐trait mapping is used to demonstrate a more consistent approach to bloom model parameterization that allows better alignment with models and laboratory‐ and ecosystem‐scale datasets. Further approaches linking statistical‐mechanistic models to trait parameter databases are discussed as a way to help optimize models to better simulate bloom phenology and allow them to support a wider range of management needs. 
    more » « less
    Free, publicly-accessible full text available August 13, 2026
  4. Abstract. The General Lake Model (GLM) is a one-dimensional open-source code designed to simulate the hydrodynamics of lakes, reservoirs, and wetlands. GLM was developed to support the science needs of the Global Lake Ecological Observatory Network (GLEON), a network of researchers using sensors to understand lake functioning and address questions about how lakes around the world respond to climate and land use change. The scale and diversity of lake types, locations, and sizes, and the expanding observational datasets created the need for a robust community model of lake dynamics with sufficient flexibility to accommodate a range of scientific and management questions relevant to the GLEON community. This paper summarizes the scientific basis and numerical implementation of the model algorithms, including details of sub-models that simulate surface heat exchange and ice cover dynamics, vertical mixing, and inflow–outflow dynamics. We demonstrate the suitability of the model for different lake types that vary substantially in their morphology, hydrology, and climatic conditions. GLM supports a dynamic coupling with biogeochemical and ecological modelling libraries for integrated simulations of water quality and ecosystem health, and options for integration with other environmental models are outlined. Finally, we discuss utilities for the analysis of model outputs and uncertainty assessments, model operation within a distributed cloud-computing environment, and as a tool to support the learning of network participants. 
    more » « less